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A heuristic construction of Hilbert superspaces using Grassmann numbers is 
suggested. Simple applications are given which include a coherent-state for- 
malism for Fermi oscillator systems. 

1. INTRODUCTION 

The use of anticommuting numbers (ACNs) in physics, introduced by 
Schwinger (1951) and later extensively considered by Berezin (1966) has 
become very popular with the development of supersymmetric theories 
(Wess and Zumino, 1974a, 1974b; Arnowitt, 1975). The invariance groups 
of such theories, the so-called supergroups, were constructed with the help 
of ACNs. With the invention of the concept of superspaces (Arnowitt et 

al., 1975) as the natural setting for supersymmetric theories, the introduc- 
tion of ACNs in manifold theory was extensively investigated (Berezin and 
Kac, 1970; Konstant, 1977). In this note we give a heuristic outline of how 
ACNs may be used in connection with vector-space theory. In Section 2 
we briefly review some pertinent properties of Grassmann algebras (GA), 
and settle our notation and terminology. For the concept of integration in 
a GA reader is referred to Berezin's book (1966). In Section 3 we use the 
concept of integration in a GA to define a Hermitian inner product. This 
step permits a formal construction of Hilbert superspaces (HSS) which we 
describe in a very heuristic way in Section 4. Simple illustrations are given 
in Section 5 including the treatment of coherent states for Fermi oscillator 
systems. 
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2. GRASSMANN NUMBERS 

A graded vector  space (over a field I K)  of elements x of form 

X=XOI"~- ExiOi"~- E xijOiOj'~-''" q-Xl .... ~Ioj (2 .1 )  
i i<j j 

(I]j0j denotes the produc t  of the generators  0 in the increasing order  of j )  
with coefficients in K is called a GA,  (2, when equipped with an associative 
bilinear p roduc t  which assigns to any pair (x ,y)EC • C a unique element  
xy E (2, a formula for which is obta ined  from (2.1) by invoking the basic 
an t i commuta t ion  rules 2 (ACR) 

OiOj.-~ OjOi ~ ( Oi, Oj} = 0  (2.2) 

The  indices i,j, etc. belong to a certain index set I (possibly infinite). The  
set G =  {Oi]iEI } is a generator  set for  (2. The  number  of elements in G is 
called the degree of (2. The  set B = { 1, Oi, OiO j with i<j  .....  IIiOi) of products  
of generators  is a basis for (2, regarded as a vector  space. The  number  of 
elements in B is the d imension of (2. Clearly, f rom (2.2) all elements in B, 
except  1, are nilpotent.  Hence  a G A  is not  a division algebra and the 
cancel lat ion law for mult ipl icat ion does not  hold in general, 3 It is clear 
f rom (2.2) that 

(2 = ~ (2k = ~ (2i (2.3) 
k i(E7/2 

where 7/2 

and 

= {0, 1 }. If deg (2 = n, then 

n! (2.4a) dimCk=(  nk)= (n_k ) , k !  

dim (2i = 2"-  ~ (2.4b) 

Each element  in (2k is homogeneous  of degree k in the generators.  Clearly, 
(2kCk, C(2~+~,. (2i consists of sums of monomials  of even (i----0) or odd  
(i = 1) degree. Clearly (2i CJ c Cli+Jl, where li +Jl = ( i  + j )  mod2. The  Grass- 
mann  pari ty o(x i) of x~E (2~ is i E  Z 2. F rom the basic an t i commuta t ion  
rules (2.2) we see that  mult ipl icat ion in C is Z z graded: 

x~xJ=(  - l)li+~lxJx ', x i  ~ ( 2  ~ (2.5) 

Clearly, f rom (2.5), the index of ni lpotence of an odd  element  is 2. 

lWe will assume for the most part K =  C (the convenient choice for quantum-mechanical 

applications) or K = R. 
2The ACRs (2.2) are limits of the canonical anticommutation rules for fermion systems as 

Planck's constant tends to zero. 
3A GA is not  an integral domain.  
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Definition. If x E ~,  the real part  R(x) of x is the first coefficient in 
the polynomial expansion (2.1). If R ( x ) = 0 ,  x is called a pure Grassmann 
and is a null divisor since x m = 0 for some positive integer m. Clearly R has 
the properties 

R ( ~ % x ~ ) =  '~%R(x~),Va~EK~ (2.6a) 

R(xy) = R(x)R(y)  (2.6b) 

It is trivial to enlarge a GA: one simply adds elements to the 
generator set. If  (2 and ~ '  are two GAs with generator sets G and G',  then 
G U G'  is a generator set for (2 | (2(2' = {yly = xx', x E (2, x 'E  (2'} 

Definition. Two GAs (2 and ~ '  over the same field are isomorphic if 
there is a one-to-one map between them that preserves (2.5). For  given 
choice of generator sets G, G'  there must exist a one-to-one map from G to 
a t" 

Clearly, all GAs of same (finite) degree are isomorphic. If  G is a 
generator set for a finite-dimensional G A  (2, over C, then clearly other 
generator sets can be obtained by means of nonsingular linear maps of G. 
Thereby we obtain inner automorphisms of (2, under which the real part  
R(x) of x is trivially seen to be invariant. Thus it is an intrinsic concept. 

Definition. Two GAs (2, ~ over the complex field are said to be in 
conjugation if there is an antilinear isomorphism between them which is in 
involution, that is, if there exists C: (2---~(2 such that 

C(xix  j)  = ( -- l )  Ii+jI C(x  ') C(x  j) 

C2(x)=x 

(2.7a) 

(2.7b) 

(2.7c) 

for every % ~ C, x~ E (2, xi E (~i. Notice from (2.7a) that the order of factors 
is reversed upon conjugation, C (xy )=  C(y)C(x). It  is especially interesting 
to consider the direct product  of two conjugate GAs (2 and (2. Its 
generator set is G U G, with the ant icommutat ion rules 

= = = o  (2.8) 

Definition. An inner automorphism of a G A  which is in involution is 
called an inner conjugation. 
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Example. Let ~ |  be a G A  over C. The  m a p  x--->2 ( x E ~ |  
defined on G tJ (7 by  pe rmut t ing  0 i with 4 ,  for  every i E I,  is an inner  
conjugat ion  in (~ | ~,  obeying  

E a,x~, = E a~2~, and R ( 2 )  = R ( x ) *  
ix ix 

Theorem. Let d~ be a G A  over  a field K. We assume d~ to have a 
fixed but  unspecif ied degree. The  subset  oy of nonni lpoten t  ele- 
ments  in d~ is a group.  4 

Proof  Clearly, ~ 3 - - ( x I x m ~ O ,  m any posit ive integer} can be char-  
acterized as oy = ( x  E ~ ]R(x)4 :0} .  I t  is clearly closed under  mult ipl icat ion 
and  contains  the identity. To  show that  it is a g roup  write x ~ oy as 

x = a ( l + v ) ,  a v a 0  

where a E K and v is a pure  Gras smann ,  i.e. v m =  0 for some positive 
integer m. Define x i = a - 1(1 - v). Clearly Ix, Xl] = 0 and x x  i -- 1 - v2. N o w  
consider  x 2 = 1 + v2. By associativity,  [x 2, x] = 0 and  (XlXz)X = X(XlX2) = 1 - 
v4. NOW iterate the procedure ,  a lways with [x#,x]--O. Clearly, there is a 
posit ive integer k for  which 

k 

xs  = xx'k = 1, where  x~ = I I  x# ~ ~- 
j = l  

since v is nilpotent.  Thus  xs is the inverse x -  1 of x, and ~ is a group. �9 
There  is a strictly Abel ian  no rma l  subgroup  oy (0) consist ing of all 

nonni lpo ten t  even elements,  

oy(0) = {x E ~ = 0 }  (2.9) 

This fact  is re levant  for  the defini t ion of the inverse of a super  matr ix  
(Arnowit t  et al., 1975). Finally,  f rom (2.6b) we see that  

which implies 

R ( X - 1 )  = [ R ( x ) ] - I  (2.10a) 

R -- R ~  all x ' Y  E ~ (2.10b) 

There fore  the real pa r t  m a p  R establishes a group h o m o m o r p h i s m  f rom ~ 
to K. This  h o m o m o r p h i s m  is clearly a projection.  

4The fact that @ does not  possess a true division subalgebra is in accordance with Frobenius 
theorem: the only division algebras over R are R, C and the real quaternion algebra, Q. 
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3. GOING F R O M  GAs TO REAL N U M B E R S  

927 

If GAs are to be used as underlying structures of physical theories, as 
it happens in the conventional formulations of supersymmetric theories, a 
well-defined prescription to associate real numbers to GA elements must 
be given. Only in this way can such a theory be testable against experi- 
ment. That a metric can provide such a rule of association, we show next, 
using the concept of integration in a GA, as developed in Berezin (1966). 
Let x , f  be elements of GAs (2 and ~, conjugate to each other. For given 
basis, we have 

^ 

x= Z G,...o~[ O[ ~Ec~" (3.1a) 
{~,} i 

2= Z Y*,...o~ O-, ~ e ~  a, eZ2 (3.1b) 
{~,) i 

where the symbol ]'I (i'I) denotes product in the increasing (decreasing) 
order of the index i~ I .  The map ( , )  : g  •  given by 

<z,x> = fd.(ao)y(a)x(o) (3.2) 

where d/x is the "Gaussian measure" over anticommuting symbols (Berezin, 
1966) 

d/z(00 ) =  I-[ exp( ~Oi)dOid ~ 
i 

defines the inner product in g .  This is the analog for anticommuting 
symbols of the inner product of the Bargmann-Segal spaces of entire 
analytic functions [or functionals (Bargmann, 1962; Tabensky and Fur- 
tado Valle, 1977)]. Using the fundamental definitions of integration in a 
GA (Berezin, 1966), 

f do, o, 1=f 44 (3.3a) 

f  oi= f (3.3b) 

we can easily show that (3.2) reduces, for x and y expressed in a given 
basis, to 

( y , x )  = ~, y~...o,,x ..... o~ (3.4) 
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Since (3.2) is expressed as an integral over ~ it is invariant under its 
inner automorphisms. Furthermore it is clearly a Hermitian inner product, 
i.e., 

(y,x)  =(x,y)* 

(X,X) > 0 

(equality holds only for x=O). The induced norm IIxll =(x,x) ~/2 clearly 
obeys triangular and Schwartz inequalities and reduces to [R(x)[ in the 
limit in which x becomes a complex number. Clearly, if a Grassmann 
element is normalizable, so is its projection onto any homogeneous sub- 
space ~k C ~.  

4. HEURISTIC C O N S T R U C T I O N  OF HILBERT 
SUPERSPACE (HSS) 

Let ~ be a GA over C. Clearly, sequences of Grassmann numbers 
form ordinary (ungraded) vector spaces under usual componentwise addi- 
tion and multiplication by complex scalars. To combine these vector 
spaces into Z2-graded ones we use ACNs in a crucial way. Only products 
of vectors by Grassmann "scalars" of definite parity are permitted. A 
vector reverses (keeps) its type under multiplication by an odd (even) 
Grassmann element. Only addition of vectors of same type is allowed. 
More precisely we can define what we call the Z2-graded direct sum @ of 
two vector spaces ~ ,  over the same field as 

~4~I U ~~= U {('~i,@li+ll)} 
i E Z  2 i E Z  2 

with the operations 
(a) (~i,~li+ll)+ ( ~ ; , ~ >  ll) = (~ i+  ~i,~li+ xi + ~li+~l) 
(b) ~(~i,~l'+'b-- (~i,  ~1'+ ~1) 

where ~;, @i E ~C and X is either even or odd. The notation H i + II means 
(i + 1) mod2. 

Clearly ~ is a group under addition; multiplication by vectors is 
distributive with respect to scalar addition, and vice versa. Also, multi- 
plication by scalars is associative and there is a unit Grassmann element 
which reproduces any vector upon multiplication by it. Thus 9C is a 
(g2-graded) vector space. We call it a super vector space (SVS). Direct 
sums and products of SVSs are SVSs. The need for the existence of an 
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underlying field for the construction of a vector space shows itself when 
one wants to define inverses of operators. However this can be circum- 
vented in the case of SVSs over Grassmann numbers because any GA 
contains an Abelian group, go), as a subset. First one generalizes the 
notion of trace to account for the grading and the corresponding gener- 
alized definition of determinant (of "supermatrices") follows (Arnowitt et 
al., 1975). Then, in order for a supermatrix to have an inverse one requires 
its superdeterminant not to be nilpotent, i.e., to belong to ~xo). Grade-pre- 
serving (grade-flipping) operators in % are defined as those that map 3(~ 
into 3C j, where j =  i mod2 [ j =  ( i+  1) mod2]. One may formally convert an 
SVS into an HSS by defining a Hermitian inner product with the help of 
(3.2), which is automatically invariant under GA automorphisms. Under 
such a product the "even" and "odd"  sectors of 0C are mutually orthogo- 
nal, so that one can confine oneself to one such sector, as long as the 
relevant operators are grade preserving. 

As a realization of a HSS we can consider the set  ~C~[_Ji{~ i} of 
ordered pairs q~i={'t'i(x,O),qgli+ll(x,O)} under pointwise addition and 
multiplication by scalars of definite parity (i ~ 772). The inner product is 

[i+ll 

k = i  
x@R" (4.1) 

Instead of attempting a systematic study of these structures in general, 
which may prove a very difficult task, we confine ourselves to simple 
illustrations. 

5. EXAMPLES 

" (1) Let ~ , j E  I ( I  is an index set, possibly infinite) be a GA generated 
by 0j. Let ~ be complex two-dimensional vector spaces, labeled by j E I, 
with basis 

Bj = {10>j, 410 ) ) ,  j E I  (5.1) 

and 

= (5.2) 

We want to develop a coherent-state formalism for Fermi oscillator sys- 
tems, defined by the Clifford algebra (5.2). The appropriate Hilbert space 
is ~2 -- | and the corresponding_GA will be C = | with genera- 
tor set G =  { 0 j l j ~ I ) .  We denote by C its conjugate algebra. Define the 
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state 

0 )  =exp  ~] Ojc] O} (5.3) 
J 

where the "vacuum" [0) denotes | j E I and 10) compactly denotes 
]01, 0 2 .. . .  ). Clearly, in view of (2.2), 10 ) is an eigenstate of the annihilation 
operator cj with eigenvalue 0j, 

9 ]0)  = 0j[0) (5.4) 

Notice that cj,j ~ I, are not grade-preserving operators since they connect 
"fermionic" states (c]]0)) to "bosonic" states ([0)j). Accordingly, they 
possess odd eigenvalues, equation (5.4). The adjoint of (5.4) gives 

<Olc]= <o1~, 6 E G (G~gene ra to r  set for ~.) (5.5) 

The identity operator in ~ is resolved as 

l = f l -  0 >d/z(00)<0 f (5.6) 

with d/z(OO)=IIj~lexp~OjdOjd @ The set {10)} is actually overcomplete 
since (0 ' [0 )  is not zero for 6~0/. Instead, (0 ' [0 )  is a reproducing kernel 
K(O',O) (with respect to d/z) for functions of anticommuting symbols, 

j0) = f I- 0')d/z(O'0')<0'10) (5.7) 

An explicit formula for the kernel is 

K(O',O)=exp E ~:Oj~-expO'.O (5.8) 
j E I  

Indeed, from (5.6) it is easy to establish the group property for K, namely, 

~:(0 ', 0) = f K(0', 0 ") + (0" 0 ") K(0 ", 0) (5.9) 

where each 0, 0', 0" denotes a set indexed by I. 
It is also easy to check that the states defined by (5.3) minimize 

uncertainty products, by formally duplicating the usual proof for bosonic 
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systems replacing c numbers by ACNs. Define the operators 5 
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h \1/2 
(5.10) 

so that 

Py=i(h--~)l/2(c]-cj) 

\1/2 
h ) (~,+~)exp~.O,=(O,lQjlO) (OlQjIO') = (5.11a) 

.[ hWj \1/2 (Ol~lO')=,~-g-) (•-Sa:)expO'O'= (O'[Pj[O) (5.11b) 

where, as usual, the bar denotes Grassmann conjugation. The expectation 
values (---)10> of these operators in a (coherent) state 19) vanish identi- 
cally, 

fa.<olo, lo> 
( g ) l ~  ( O , O ~ -  J/'d~(OlO ) --0 (5.12) 

and similarly for Pj, j E I. Furthermore, one finds 

h 
(QJ2>l~ 2wj 

and 

(5.13a) 

(~2)1o>- hwj 2 (5.13b) 

so that the root mean square deviations AQj,AP 2 of these operators obey 

h 
A QjA Pj 2 a l l j~  I 

In a Bargmann wave-function realization of ~C the coherent states are 
given by 

(ujO ) =--q~o( u)=exp&u 
5No connection with position or momentum operators is implied. 
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where 0. u--Y, iOiUi, i E I; 0 i E G, H i ~ C. This is easily seen by noticing that 
the annihilation operators in this realization are O/Ou~, so that the 
coherence requirement 

0 

is trivially satisfied. Furthermore 

f a (u, = x ( 0 ,  0,) 

where t~(u*) = exp ~ u* and dF(u* u) = exp( -  u*u)(du du*/Tr) (in the one- 
dimensional case). Notice that K(O,O') is in exact analogy to the corre- 
sponding kernel in the bosonic complex variables u i, i E I ,K(u, u')= exp u*. 
u'; algebraic conjugation in the former case plays the role of complex 
conjugation in the latter. Finally, corresponding expressions may be de- 
rived in the ordinary coordinate realization of ~C, i.e., (xlO)=4,o(x). 

(2) As a f inal  example we consider the even part E of the pseudo- 
Euclidian HSS used as base-space in supersymmetric theories. Consider a 
Lorentz 4-vector z ~  E ~ @ if-2 where r is a GA over the reals with fixed 
but unspecified degree. Adjoin to z(~) a four-component anticommuting 
Majorana spinor with components zo m) E ~1. Clearly, the set ~ of column 
vectors 

Z = [  Z~o)] (5.14) 
\z<%) 

forms a real linear vector space (with the usual operations). The subspace 
5L c E of vectors of the form 

with R(z~o))= z~o) is identified with Minkowski space-time. A real Lorentz- 
invariant scalar product in E is given by 

(5.16) 

where we have used matrix notation: ~ is the Minkowski metric, C the 
charge conjugation matrix, T denotes transposition, and a hat (~) denotes 
Grassmann conjugation (here we reserve horizontal bars to denote Dirac 
adjoints); dt~ is the Gaussian measure in ~.  
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In  E we can per form supergauge t ransformations (Wess and Zumino,  
1974a, b) J : ~ -->~ defined by 

T ( Z )  = Z +  8 (5.17) 

where 

~z (l)Y z o ) ~  

The supergauge t ransformat ion J is labeled by Majorana  spinorial anti- 
commut ing  parameter  z~o (a suitable real Majorana  representat ion of the 
Dirac algebra is assumed). It is clear f rom (5.16) that  

( Z , 8 )  = 0  (5.18) 

since integration with respect to the Gaussian measure will involve an odd  
number  of an t icommut ing  symbols. Therefore a supergauge t ransforma- 
tion J may  be interpreted as an orthogonal translation in E .  Let Jj, j E I ( I  
a certain index set) denote a family of supergauge transformations.  If we 
per form a succession S = I [ j J j  (in a certain unspecified order) of such 
t ransformations on a vector Z L ~ E L and fur thermore identify E with the 
collection of orbits of Z L elements under  S, then it is clear that  E admits  a 
decomposi t ion  into "longitudinal"  and  "transverse" components  E L and 

Er, 

E = ~ L ~ E  r (5.19) 

where E T = ~3 j~IU r contains all nilpotents. As a final remark note that  
the longitudinal subspace ~/~ C E is clearly closed under  the Poincar~ 
group. 
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